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69University of Tennessee, Knoxville, Tennessee 37996, USA
70Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan

71Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
72Vanderbilt University, Nashville, Tennessee 37235, USA

73Waseda University, Advanced Research Institute for Science and Engineering, 17 Kikui-cho, Shinjuku-ku, Tokyo 162-0044, Japan
74Weizmann Institute, Rehovot 76100, Israel

75Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences (Wigner RCP, RMKI),
PO Box 49, H-1525 Budapest 114, Hungary

76Yonsei University, IPAP, Seoul 120-749, Korea
77University of Zagreb, Faculty of Science, Department of Physics, Bijenička 32, HR-10002 Zagreb, Croatia
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The standard model (SM) of particle physics is spectacularly successful, yet the measured value of the
muon anomalous magnetic moment (g − 2)μ deviates from SM calculations by 3.6σ. Several theoretical models
attribute this to the existence of a “dark photon,” an additional U(1) gauge boson, which is weakly coupled to
ordinary photons. The PHENIX experiment at the Relativistic Heavy Ion Collider has searched for a dark photon,
U , in π 0,η → γ e+e− decays and obtained upper limits of O(2 × 10−6) on U -γ mixing at 90% C.L. for the
mass range 30 < mU < 90 MeV/c2. Combined with other experimental limits, the remaining region in the U -γ
mixing parameter space that can explain the (g − 2)μ deviation from its SM value is nearly completely excluded
at the 90% confidence level, with only a small region of 29 < mU < 32 MeV/c2 remaining.

DOI: 10.1103/PhysRevC.91.031901 PACS number(s): 25.75.Dw

Introduction. The standard model (SM) of particle physics
provides unprecedented numerical accuracy for quantities such

*Deceased.
†PHENIX cospokesperson: morrison@bnl.gov
‡PHENIX cospokesperson: jamie.nagle@colorado.edu

as the anomalous magnetic moment of the electron (g − 2)e
and predicts the existence of the vector bosons W± and Z0 and
the recently discovered Higgs boson. Hence, measurements
that lie outside SM predictions warrant special scrutiny. One
such result is the measured value of (g − 2)μ for the muon [1],
which deviates from SM calculations by 3.6σ [2]. An
intriguing explanation for this discrepancy has been proposed
by adding a “dark” gauge boson [3–6]. While the possibility
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of a hidden U(1) gauge sector had been considered shortly
after the advent of the SM [7,8], it has recently gained more
relevance, because it provides a simultaneous explanation of
various beyond-the-SM phenomena in addition to (g − 2)μ.
These include, for example, the discrepancy between the
world’s data on proton charge radius [9] and that obtained by
the Lamb shift in muonic hydrogen [10,11] and the positron
excess in cosmic rays observed by ATIC [12], PAMELA [13],
and AMS-II [14] by providing a new mechanism for the decay
of dark matter [15,16].

While a variety of mechanisms can be introduced to
parametrize dark-sector physics, a simple formulation postu-
lates a “dark photon” of mass mU that mixes with QED photons
via a “kinetic coupling” term in the Lagrangian [7,8,17,18]

Lmix = −ε

2
F QED

μν F
μν
dark, (1)

where ε parametrizes the mixing strength. Dark photons can
then mix with QED photons through all processes that involve
QED photons, with an effective strength αU = ε2αEM . If the
dark photon mass exceeds twice the electron mass, it can decay
into an e+e− pair, and in the minimal version of the model; this
is its dominant decay mode in the interval 2me < mU < 2mμ.
To date, a wide range of searches [18] has excluded most of
the [mU,ε] parameter space that could explain the deviation
of (g − 2)μ from its SM value. In this work, we report on new
limits that exclude at the 90% confidence level essentially all of
the remaining allowed parameter space, thereby rendering the
dark photon an unlikely candidate to resolve the discrepancy
of (g − 2)μ with the SM.

Searching for π0,η → γU,U → e+e−. We search for
possible decays of π0,η → γU,U → e+e− by examining
the invariant mass mee of e+e− pairs in a large sample of
Dalitz decays, π0,η → γ e+e− for 30 < mU < 90 MeV/c2

in the dark photon parameter space, where the possibility
of disentangling the (g − 2)μ anomaly by the dark photon
survives at the 90% confidence level. The invariant yield of
virtual photons from the Dalitz decays of π0,η is given by the
Kroll-Wada equation [19],(

dNee

dmee

)
γ e+e−

= N2γ

4αEM

3π

1

mee

KWπ0,η(mee)
∣∣F (

m2
ee

)∣∣2
, (2)

where

KWπ0,η(mee) =
√

1 − 4m2
e

m2
ee

(
1 + 2m2

e

m2
ee

)(
1 − m2

ee

m2
π0,η

)3

, (3)

N2γ is the invariant yield of 2γ decays of π0,η, αEM is the fine
structure constant, and me,mπ0,η are masses for the electron,
π0 and η, respectively. The deviation of the transition form
factor F (q2) from unity is 0.0157 even at mee = 90 MeV/c2

from the parametrization of F (q2) = (1 − q2/	2)−1 with
	 = 0.72 GeV [20]. Therefore, the variation of F (q2) is small
enough in the mass range of interest to set F (q2) = 1 in the
calculation. The weak coupling of the dark photon to the QED
photon implies that the natural width of the dark photon is
very narrow, and as a result the expected line shape of the dark

photon is set by the mass resolution, σ , of the detector,(
dNee

dmee

)
γU

= N2γ

2ε2

√
2πσ

e
−(mee−mU )2

2σ2 KWπ0,η(mee). (4)

From the peak-height ratio,

R(mU ) = (dNee/dmee)π0,η→γU/(dNee/dmee)π0,η→γ e+e− ,

(5)

the dark photon mixing parameter can then be determined as

ε2 = 2αEM

3π

σ

mU

√
2πR(mU ). (6)

Note that in this approach the efficiencies for detection of e+e−
pairs from Dalitz decays and from dark photons cancel in the
ratio R(mU ).

The analysis presented here is based on a precise mea-
surement of virtual photons from π0 and η Dalitz decays [21]
across three PHENIX data sets at a collision energy of

√
s

NN
=

200 GeV with an integrated luminosity of 4.8 pb−1 of p + p
collected in 2006, 82.3 nb−1 of d + Au collected in 2008,
and 6.0 pb−1 of p + p collected in 2009. Here the d + Au
statistics corresponds to 2 × 197 × 82.3 nb−1 = 32.4 pb−1

of nucleon-nucleon collisions. All three data sets include
an electron triggered sample, and the single electron trigger
threshold for the d + Au run was higher than that for the p + p
runs. A hadron blind detector (HBD) [22] was installed in the
experiment around the primary collision point prior to the
2009 data taking period. The additional material of the HBD
resulted in a corresponding increase in the external photon
conversion rate. The experiment was also operated with a
reduced magnetic field integral during the period of HBD data
taking. These effects substantially alter the shape of the 2009
e+e− mass spectrum below 35 MeV/c2 relative to the spectra
from 2006 and 2008. Therefore, we restrict the 2009 analysis
to the mass region above 40 MeV/c2 to avoid the edge effect
at parametrization of the Dalitz contribution.

The PHENIX apparatus [23] was designed with only 0.39%
of a radiation length (X0) in front of the tracking detectors. It
generates a small rate of conversions in the experimental aper-
ture and provides excellent momentum resolution and electron
identification. The HBD brought an additional material budget
of 2.4% × X0 for the 2009 run. The tracking system comprises
drift wire and pad chambers with a momentum resolution
of δp/p = 1% ⊕ 1.1% × p [GeV/c]. Charged tracks with
momenta above 0.2 GeV/c and pseudorapidity |η| < 0.35
fall within the PHENIX acceptance. Electron identification
requires hits in a Ring Imaging Čerenkov detector and energy-
momentum matching in an electromagnetic calorimeter with
an energy resolution of δE/E < 10%/

√
E[GeV].

All combinations of electrons and positrons in an event
are taken as pairs for the analysis. The contributions owing to
random combinations, correlated fake pairs from double Dalitz
decays (π0,η → e+e−e+e−), and jet-induced correlations are
evaluated using like-sign pairs. After scaling by the number
of nucleon-nucleon collisions, the correlated backgrounds in
p + p and d + Au are very similar, indicating that these
background contributions are well understood. Pairs stemming
from photon conversions in the material of the detector are
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FIG. 1. (Color online) The raw spectra of e+e− pairs for the 2006 p + p, 2008 d + Au, and 2009 p + p data sets. The contributions of
various background components to the measured invariant mass spectra are shown. The 2009 p + p data have a significant contribution to the
conversion background coming from the material of the HBD that is not present in the 2006 and 2008 data sets.

removed by a cut on their characteristic angular orientation
with respect to the magnetic field [24]. For the 2009 p + p
data, conversion pairs are rejected by a cut on the cluster size
in the HBD, which depends on the pair opening angle [25],
because the lower magnetic field of the 2009 run reduces the
rejection power of the angular orientation cut. Conversions
in the HBD readout plane were removed by an analysis
technique of mass reconstruction assuming electrons come
from the HBD readout plane [26]. In the 2009 data set we
consider pairs with an invariant mass above 40 MeV/c2,
where the contribution of conversion pairs becomes negligible.
Excluding these nonhadronic background pairs, we obtained
67 000, 167 000, and 75 000 e+e− pairs for 2006 p + p,
2008 d + Au, and 2009 p + p, respectively, in the mass range
30 < mee < 90 MeV/c2, where most pairs originate from
π0,η Dalitz decays. Contributions to the electron pair spectrum
are estimated by a GEANT3-based detector simulation using the
measured invariant yields for hadrons as input. Effects such
as the single electron trigger efficiency and inactive areas in
the detector are taken into account. Figure 1 shows the raw
spectra of e+e− pairs with the hadronic decay and background
contributions for the 2006 p + p, 2008 d + Au, and 2009
p + p data sets.

If the expected dark photon invariant mass distribution
follows a normal distribution, then the standard deviation is
equal to the detector mass resolution, as already described.
This resolution is determined using a Monte Carlo procedure
based on a GEANT3 description of the experimental apparatus.
Spectra of dark photons with a flat distribution in transverse
momentum for pT < 5 GeV/c, covering the full azimuth, with
rapidity |y| < 0.5, and with an initial vertex within 35 cm of
the nominal vertex position are generated and forced to decay
as U → e+e−. Dark photon masses from 20–90 MeV/c2

were investigated, with 20 × 106 decays generated at each
mass hypothesis. The reconstructed e+e− pairs were then
weighted according to their pair pT to follow the experi-
mental e+e− pair spectrum after background subtraction. The
e+e− invariant mass resolution for the PHENIX detector in

30 < mee < 90 MeV/c2 is σ = 3.1 MeV/c2, with a 3% un-
certainty. The calculated mass resolution is also confirmed
with the data via a shape matching of the π0 Dalitz peak
around 5 MeV/c2.

To establish a limit on the dark photon yield, we first de-
scribe the shape of the background-subtracted e+e− spectrum
with a physics-motivated curve composed of the Kroll-Wada
formula for virtual photon yield from both the π0 and the η
multiplied by a fourth-order Chebychev polynomial T4(x) to
allow for slight deviations owing to various detector effects:

f (mee) = 1

mee

×
[(

1 − m2
ee

m2
π0

)3

+ rη/π0 ×
(

1 − m2
ee

m2
η

)3]

×T4(mee). (7)

The η/π0 ratio, rη/π0 , is fixed at 0.17, a value determined
using a realistic “cocktail” of hadronic decays filtered through
a model of the detector acceptance. The ω/π0 ratio is fixed
at 0.03. The shapes of the e+e− mass spectra from η and ω
decays are indistinguishable for mee < 100 MeV/c2, and their
combined yield relative to the π0, 0.17 + 0.03 = 0.20, is taken
as the effective η/π0 ratio for the analysis.

We divide the full mass ranges of 25 < mee < 95 MeV/c2

and 35 < mee < 95 MeV/c2 into lower and higher mass
ranges after nonhadronic background subtraction, use Eq. (7)
to describe each portion, and demand continuity of the model
at the mass where the two ranges abut. A simultaneous fit
to the three mass spectra, allowing each an independent
normalization, results in a combined description of the Dalitz
continuum. This procedure produces a lower reduced χ2 for
the overall fit than using a single mass range for each data set.
The break point dividing the lower and upper mass ranges was
allowed to vary, with 61 MeV/c2 giving the best reduced χ2.

Figure 2 shows the best-fit result to the Dalitz decay
contribution in each data set after subtraction of unphysical
background pairs. The contribution of the fit procedure to the
total uncertainty is explored by varying the break point above
and below this preferred value until the reduced χ2 statistic
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FIG. 2. (Color online) The best fit to the three mass spectra with the physics-motivated function describing the e+e− distributions from
hadron decays.

rises by one and then taking the resulting 16% effect on the
experimental sensitivity as the systematic uncertainty owing
to the procedure.

Results. The fitted background describes the yield of e+e−
counts absent a dark photon signal. We employ the C.L.s
statistical approach [27] to determine a limit on the number
of dark photon candidates, which is in line with the current
practice of setting limits for a hypothetical particle. This
method has the effect of reducing the strength of the limit
determination in the case of low (or no) signal strength,
generally resulting in a conservative estimate of the C.L.
We step through the full mass range with a 1 MeV/c2

step repeatedly refitting the spectrum with the addition of a
Gaussian of width equal to the mass resolution and centered
at each mass hypothesis. This determines the observed yield
as a function of mU , which may be greater or less than the
experimental sensitivity at each mass, with a significance that
is determined by the underlying probability distribution of the
background, which is calculated by a likelihood ratio between
the signal + background and background-only hypotheses.
The assumed background yield in any mass window will
have uncertainties owing to statistical fluctuations in the data

used to determine the parameters describing the background
by Eq. (7) and from systematic uncertainties in alternative
background shapes. We evaluated the variation in the experi-
mental sensitivity owing to fluctuations in these uncertainties
in addition to the uncertainty in the e+e− mass resolution.
The observed value, the experimental sensitivity, and one-
and two-standard-deviation bands around the experimental
sensitivity (shown as green and yellow bands) are all indicated
on the plots for the different data sets as well as the combined
result in Fig. 3.

The p value under the null hypothesis from the combined
result is calculated considering only the statistical uncertainty
and is always greater than 0.27 in the entire range 30 < mU <
90 MeV/c2. The minimum p value is consistent with the
background-only hypothesis if the look-elsewhere effect [28]
is taken into account. Therefore, the limit on the number
of dark photon candidate events can be translated directly
into a limit on the dark photon coupling parameter using
the peak-height ratio, Eq. (5). Figure 4 shows the limit
determined by PHENIX along with the 90% confidence level
(C.L.) limits from the WASA [29], HADES [30], KLOE [31],
A1(MAMI) [32], and BABAR [33] experiments and the 2σ
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FIG. 3. (Color online) The experimental sensitivity and observed limit on the number of dark photon candidates as a function of the assumed
dark photon mass. The ±1σ and ±2σ bands of the combined statistical and systematic uncertainties around the experimental sensitivity are
shown in green and yellow, respectively.
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FIG. 4. (Color online) A compilation of the limits on the U -γ
mixing parameter, showing the PHENIX results. Also shown are
the limits at 90% C.L. from WASA [29], HADES [30], KLOE [31],
A1(MAMI) [32], and BABAR [33] experiments and the band indicating
the range of mass and coupling parameters favored by the (g − 2)μ
anomaly at 90% C.L. Also shown is the 2σ upper limit obtained from
(g − 2)e [34].

upper limit theoretically calculated from (g − 2)e [34]. The
bands indicate the range of parameters that would allow the
dark photon to explain the (g − 2)μ anomalies with the 90%
C.L. The upward fluctuation apparent in the 2008 d + Au
data compensates for a downward fluctuation of similar scale
in the 2009 p + p data, leading to the slightly modulated
limit of the combined result. The PHENIX results cover the
mass range 30 < mU < 90 MeV/c2, and over that range set
a stricter limit than those of WASA, HADES, or KLOE and
complement the A1(MAMI) results for their less sensitive
region below 50 MeV/c2. The PHENIX limits exclude the
values of the coupling favored by the (g − 2)μ anomaly
above mU > 36 MeV/c2. Recently, BABAR reported stricter
limits from a search of the reaction e+e− → γU,U → l+l−,
excluding values of the preferred (g − 2)μ region for mU >
32 MeV/c2, and covering a mass range up to 10.2 GeV/c2. As
a result, nearly all the available parameter space which would
allow the dark photon to explain the (g − 2)μ results are ruled
out at the 90% C.L. by independent experiments. Figure 5
shows the PHENIX limits in the dark photon parameter
space with different confidence levels, focusing on the small
remaining parameter space for 30 < mU < 32 MeV/c2. The
entire parameter space to explain the (g − 2)μ anomaly by the
dark photon can be excluded at the 85% C.L. by the PHENIX
data alone. The level of the compatibility between our data
and the coupling strength favored for the (g − 2)μ anomaly is
10% with a statistical test [35].

Conclusions. In summary, the PHENIX results set limits for
the coupling of a dark photon to the QED photon over the mass

]2 [MeV/cUm
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σelectron g-2 2
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FIG. 5. (Color online) Limits on the U -γ mixing parameters
from PHENIX at different confidence levels, together with the 90%
C.L. limits from BABAR [33] and A1(MAMI) [32], the 2σ upper limit
derived from (g − 2)e [34], and the region favored by (g − 2)μ.

range 30 < mU < 90 MeV/c2, improving upon the recent
results of the KLOE, WASA, HADES, and A1 experiments.
Combining with the BABAR results, the dark photon is ruled
out at the 90% C.L. as an explanation for the (g − 2)μ anomaly
for mU > 32 MeV/c2, leaving only a small remaining part of
parameter space in the region 29 < mU < 32 MeV/c2. The
probability that the theoretically predicted coupling strength
required to explain the (g − 2)μ anomaly is compatible with
the PHENIX results is only 10%. Future analyses by PHENIX
would be able to provide even more stringent limits owing
to both increased data sets and improved detector technology
that allow measurement of displaced vertices. As the coupling
to the dark photon gets weaker, the distance traveled by the
dark photon before decaying into e+e− grows longer [36]. The
high-statistics data set taken after the recently commissioned
PHENIX silicon vertex detector was installed in 2011 is being
analyzed to look for such weakly coupled dark photons to
provide limits even more restrictive than those reported here.
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